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Plan of the talk

 Motivation.

» Critical phenomena in RRG perturbed by
chemical potentials for short cycles

 Matrix model for the massive spinless
fermions on planar RRG. Derivation and critical
behavior

* Phases in partially disordered RRG



Two roles of RRG

» Discrete model of 2d quantum gravity. Can be
considered in canonical ensemble with
cosmological constant or in microcanonical
ensemble - fixed area

* Model of Hilbert space for the interacting many-
body system.

* Evidently perturbations of RRG in two
frameworks have very different meaning



The Perturbations of RRG

Diagonal disorder- model for MBL phase

Chemical potentials for number of short cycles.
Number of nodes fixed.

Massive fermionic determinant for the canonical
ensemble--- chemical potentials for all number
of nodes.

Partially diagonal disordered RRG. Some
nodes are clean

General question - fragmentation of geometry
induced by back reaction of matter



Some facts on RRG
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General motivation. History

---RRG as model for the Hibert space. MBL toy model

Localization in the Hilbert space (Altshuler,Gefen,Kamenev,Levitov)
MBL — Basko,Aleiner,Altshuler + Gornyi,Polyakov,Mirlin
Localization on RRG( Mirlin,Fyodorov, Tarzia, Kravtsov,
Khaymovich, De Luca, Scardicchio, Tikhonov, Altshuler, loffe,

de Tomasi, Biroli,Ros, Zirnbauer, Lemarie,Roy......

— Fragmentation of the RRG as a mechanism of localization
Turner,Mikhailidis, Abanin, Serbin,Huse,
. Moudgalya, Bernevig ,Regnault .....

— Quantum scars in the spectrum
Abanin, Serbin, Huse, Prosen, Pakourski, Klebanowv....

— RRG and 2d quantum gravity interacting with matter.
Kazakov, Brezin, Migdal, Kostov, David, Mehta, Boulatov,
Parizi, Zinn-Justin,Zuber, ltzykson,Al.Zamolodchikov...



RRG perturbed by k-cycles

Statistical model of exponential random graphs

T
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graphs

We consider ensemble of random regular graphs . In terms of statistical
mechanics it is mixed ensemble. Number of nodes is fixed while the
chemical potentials, say, for 3-cycles and 4-cycles are introduced



Clusterization transition in RRG

Avetisov,Hovhannesyan, Nechaev
Tamm,Valba A.G. 16’

f> fherit Clusterized phase

Chemical potential

for 3-cycles
N/q clusters

for RRG

g - degree of node

The cluster sizes in RRG are the same. One-step replica symmetry breaking.

The clusters are the eigenvalue instantons in the spectrum.



Spectral analysis of
criticality.Eigenvalue instantons

Example of spectral density of adjacency matrix in the clusterized phase.d=20
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RRG perturbed by 4-cycles and
Thermofield double

ALV = Z ’{:__._—p.de

{states}

RRG
[y = ;“E Above the critical value of the chemical potential

the RRG gets clusterized into bipartite clusters

Celly, Trugenberger,Biancolana 20
Valba, A.G. 21’

If one more condition added bipartite clusters are of the special type - hypercubes
and correspond to a thermofield double state

The number of bipartite clusters is fixed by the node degree in RRG ensemble.

For all even k — the clusters are bipartite



Phase structure and localization

Kochergin,Khaymovich. Valba, A.G. 23’

4 phases

— Unclustered phase

— TEN enriched phase -- precursor of clusterization

— |ldeal cluster phase

--Phase of interacting clusters

We have analyzed numerically k=3-6 cycles
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FIG. 1: Phase diagram in the plane “chemical potential — vertex degree” (ux,d) for finite-size RRG graphs for
N = 256 and k = 3-cycles. (a-c) The cluster structure of RRG in (a) unclustered; (b) ideally clustered, and
(c) interacting clustered phases. (d-e) Phase diagram, with drastic changes (d) in the density of states (DOS) via
the Hellinger distance with respect to the ideal cluster, showing the clusterization transition (purple squares), and
(e) in the higher-order fractal dimension D, sensitive to the scar states, given by the topologically equivalent nodes
(TEN). Panels (f-i) show the averaged DOS in each of the 4 phases: (f) unclustered, (g) TEN-scarred unclustered,
(h) ideally clustered, and (i) interacting clustered phases. The colors of the solid circles in the panels (d, e), marking
each of 4 phases, correspond to the colors of the blocks in (a-¢) and the DOS in (f-i). Solid white u.(N,k,d),
Eq. (26), and dashed black prpn (N, k,d), Eq. (34), lines show analytical estimates for the transition lines between
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FIG. 10: Phase diagram in the plane “chemical potential — vertex degree” (uy,d) for finite-size RRG graphs for
N = 256 and k = 4-cycles, similar to Fig. 1. (a-c) The cluster structure of RRG in (a) unclustered; (b) ideally
lustered, and (c) interacting clustered phases. In the case of even k the graph is bipartite in the clustered phase.
-¢) Phase diagram, with drastic changes (d) in the density of states (DOS) via the Hellinger distance with respect
the ideal cluster, showing the clustering transition (purple squares), and (e) in the higher-order fractal dimension
)4, sensitive to the scar states, given by the topologically equivalent nodes (TEN). Panels (f-i) show the averaged
JS in each of the 4 phases: (f) unclustered, (g) TEN-scarred unclustered, (h) ideally clustered, and (i) interacting
:lustered phases. The colors of the solid circles in the panels (d, e), marking each of 4 phases, correspond to the

lors of the blocks in (a-c) and the DOS in (f-i). Solid white u.(N,k,d), Eq. (26), and dashed black prenx(N,k,d),
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Phase structure
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. Critical lines

Clusterization transition

TEN saturation transition



Quantum scars in perturbative band

Kochergin,Khaymovich,Valba,AG 2023

Scar localized states.Localization occurs on specific subgraphs

Topologically equivalent nodes — TEN in perturbative band
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(b) TEN (red) with the nearest neighbors (blue).
Edges that connected TEN are highlighted in magenta
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FIG. 4: (a) Evidence of TEN emergence in the density
of states (color histograms) and energy-resolved I PRy

(symbols) for k = 3-cycles. State before (after) jump
discontinuity vs py is marked by blue (orange) color.
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The amplitude of the local maximum at A = —1 of both

DOS and I PR, after the jump drastically increases.
(b) Dipole TEN nodes (red squares) with the nearest
neighbors (blue circles), that form a DOS peak at
A = —1. Edge, connecting TEN nodes is highlighted in
magenta.
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FIG. 6: (a) Evidence of additional TEN emergence at
A ==+1, +/7, +/8 (vertical dashed lines) in the

density of states (color histograms) and energy-resolved
IPR,4 (symbols) for k = 4-cycles. The notations are the

same as in Fig. 4. (b) Two coupled TEN sets (red
squares), with the nearest neighbors (blue circles), that
form a DOS peak at A = +1. Edges, connecting TEN

sets are highlighted in magenta.

Dipole and multipole interacting TENs



Simplest scars at origin

(b) TEN (red) with the nearest neighbors (blue)

Simplest dipole non-interacting TEN



Remark.Scars from gravity
viewpoint

Consider RRG as triangulation described by the adjacency matrix A.
TEN is equivalent to condition det A=0, the rank of the matrix A gets changed.

From the viewpoint of triangulation of surface change of the rank corresponds
to the marked point on the surface — defect ( Fomin,Shapiro, Thornston 08)

Hence scars=TENs correspond to localization at the defect on the surface.

Some analogy with the gravitational scars localized near the black hole
(Dodelson,Zhiboedov 22). Dual to the twist operators at the boundary

There was also attempt of holographic interpretation based on
coadjoint Virasoro orbits Liska, Gritsev et al 22’



Surprise.Semi-Poisson in non-
perturbative band
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FIG. 7: Level spacing distribution for RRG in clustered
phase for £ = 3, d = 20, N = 256 separately for (a) the
perturbative mid-spectrum band ignoring TEN states
and (b) the non-perturbative side-band. Red dashed,
blue dotted, and green solid lines show Wigner-Dyson
(a=1,v=0), Poisson (« =0, v=1), and
semi-Poisson (a = 1, v = 1) distributions, Eq. (55),
respectively. Level spacing is calculated for the unfolded
spectrum, Eq. (52), using 500 random realisations.
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Localization at combined
disorder:Structural+diagonal

Flat diagonal disorder W is added. The proceedure is as follows. First
|dentify the graph structure and then analyse the localization of states.
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FIG. 9: The evolution of energy-resolved fractal dimension for RRG N = 1024, d = 20 in the interacting clusterized
phase with diagonal disorder W, plotted versus (a, b) eigenenergies for pg = 2 for different W ranges, as well as
(c¢) the average fractal dimension versus the chemical potential ps3. Each point of a color plot is averaged over 20

(a, b) or 5 (¢) structural and 5 (a, b, ¢) disorder realizations.



Massive particle on planar RRG

Instead of the potentials V(L)~ Tr L3 or Tr L"*4 let consider the potential
V(L, M*2) ~ Tr Log(L-M"2) = log det(L-M”"2) which yields the power potentials
for RRG ensemble discussed above as expansion at large mass M

Kazakov,Levkovich-Maslyuk,Mishnyakov, A.G , 22

; ~ T 1 AT 1 ~
Z =" Ndet[ul - A(G)] = AN det[-A1* + SA(G)
G G

The model has (at least) three different interpretations
--- 2d quantum gravity interacting with massive spinless fermions (q=3 node degree)

--- Statistical model of weighted rooted trees in a forest averaged over RRG ensemble

--- Hermitian one-matrix model with the non-trivial potential



2d gravity and matrix models.

- Consider the non-critical string . According to Polyakov we have to integrate
over the worldsheet metrics which is taken into account via Liouville action

- Dimension of the target space D for string enters via power of determinant upon
the integration over matter field.

- D=0 target space (c=0 theory) — no determinant

- D=-2 ,( c= -2 theory) — «fermionic determinant» positive power

--- Instead of the integration over the metrics — summation over the graphs
Kazakov 85, David 85

— Summation over the graphs(RRG) gets substituted by the large N matrix model
Whose perturbation theory reproduces the combinatorics of the summation over
The graphs. Leading terms in N — planar graphs



Partition functions

Z=loa¢ = " N2 detfn? + A(G)
G

--Sum is over random regular graphs (RRG) =3
--pure gravity c=0 limit — no determinant at all
— c=-2 limit —massless determinant with zero mode removed

— finite mass- interpolation between two limits

Z(Ag,n,mp) = / Dg(0) / Di(c) Do (o) exp | - / d*a\/g (g“-ji:)aLEE)__gz,-'; +mi+ Ag + & R)
D

— 1 /@D ds [Q(G(s))]w] (1.1)

Continuum limit of partition function



Matrix model for massive fermions
coupled to 2d gravity. Derivation via
Parisi-Sourlas trick

Let us use the Parisi-Sourlas trick applied for massless case by David and Kostov-Mehta.
Reduce the dimension from D=0 to D=-2 by adding the anticommuting coordinates.

¢ = / DN (f) V5@ = / AV d®V NV NS(@)

D) =+ 601+ 601 + 6 be
Action for superfield depending on mass and cosmological constant

1 | _ A 127 |
S(®) = tr f d20 (—5@2(9) — 500®(6)50(0) + ?e--—%“ 00 [dr(@)ﬁ)



Potential for the matrix model

L 1 3 . - .
S(®) =tr [5"52 — (0 — A@?}Q)E — 5')\41{2@3 + h — AN(oh + 'l,i'l"ff-t'f-'fii)] .
= [ dV’ ¢ det(1 — 2)¢) V¥ [~a(6-2¢%)7+3AM3¢7]

Introduce the change of variables to cancel determinant

T T 1 - 1 F , -
¢ = /d_h 25 Nt [—1X2 4 1AM263 (X))

We select only one root for the quadratic equation
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Figure 1. Potential for eigenvalue for M =1 (without Vandermonde term). The eigenvalues
should be confined in this well, below the branchpoint = 1/4).



Matrix model for massive fermions
coupled to 2d gravity. Derivation via
matrix-forest theorem

Matrix-tree theorem of Kirchoff det' L =# (spanning trees) for
any graph G where a zero-mode is removed at |hs

Generalization to the matrix-forest theorem Chelnokov-Kelmans 74
David-Duplantier 88

All trees are rooted
det[l-ﬁg + lA(G)] = ) H MV (3)
3! 3 :
F=(F..F)eGi=1

where V'(F}) is the number of nodes in the tree F; and M 2 counts the number of trees in
the forest.



i

Step 1 — combinatorial brute force derivation of potential for the unrooted trees in
a forest from matrix-forest theorem Bondesan, Caracciolo,Sportiello 17"

Step 2- derivation of the potential for the rooted trees in the forest

~ 1 ‘ o
V(iz) = — (—6;‘) (1 —42)%% 162 — 1) -
(2) 1222 ( ) P AN/ -1 —-4)\X ’ . 277
S~ | 2 , — 2\ (X-if ()\X))
. Z ~ n4-2 I T (2?2)1 3 2/\
= Cp 2 ) where ¢, =

n!(n+2)!

n=1



One-cut solution

. 1 _
Resolvent G(x) = B (’f —/(z—a)(x — (J))

_ 2\ ¢
+ gfzﬂfg (1 - 2(0—F) K

2 m/eve —b

51‘121; — I—=¢ Argument of elliptic K(m) m = “—p

a—2b

B’=c¢—0b,m=
c—Db

Equations providing the correct asymptotics of G(x)

7B (m —2) - 18BA/eM2E + 2nBe (0M* + 1) - 18¢/20M°K = 0

3B m2=36B>/eM*((m=2)E-2(m=1)K)+108B* 2 M>((m—=2) K +2E) - 487 = 0



Critical curve

A
i At the critical curve the large area
0121 surfaces dominate. For c=0 and
=-2 there are critical points
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Figure 3. The critical curve A\.(M). The shaded area below the curve shows the allowed physical
region on the (M, \) plane where the density is real and positive.



Interpolation between three regimes

Large M limit. Pure gravity

AN a
K/ . /KVKQ Finite intermediate M

M=0 branched polymers phase



Limit to pure 2d gravity

M — oo Heavy fermions should decouple and pure gravity emerges

M2 = Aest Effective cosmological constant is finite

A = exp(—/fo) Nesf(M?) = exp(—B(M?))

Renormalization of cosmological constant B(M?) = fy — log M2
by massive fermions | | N
SNECIE
(Aoif erie )™ = 123 Critical value of the cosmological constant in

pure gravity is reproduced correctly



New double scaling limit

* Focus at the critical curve.
 Assume that there is new point M_c with new
criticality. (M_c-M) L =const

* Perform the non-perturbative summation of all
such terms

 Evaluate M derivative of the partition
function=mean number of trees

* The number of fragments is finite!



New double scaling. 2

p i ,
2 = o = hmte Mhrssp=21 Z-scaling variable, p~1/L
160
P, ~ 25[1&2 — 2t) + 32 — 2t This function counts the number
\ Of the components in the graph

Leading term in J

J = 512772 — 72¢/27 log(M =)
M[—Bl log2(M2) + 8647 f log (M=) — 324(v/21 — 1) log(M?2)

+

—163847%2% + 92167 (7 — V2)2| .

o ol
J =t —log(m t) t- Lambert function



Mobility edge in the partially
disordered RRG

Valba, A.G. 22', D.Kochergin, I. Khaymovich, O.Valba, A.G in preparation

Consider the inhomogeneous Anderson model on RRG with « dirty» and « clean» nodes.
The diagonal flat disorder at dirty nodes and no disorder at clean ones.

We study non-interacting spinless fermions hopping over RRG with connectivity p = 3 in a potential
disorder described by Hamiltonian

SN

H = Z (c;rcrj -~ cicr;r) + Zfich: (1)
i=1

(i.3)

where the first sum runs over the nearest-neighbor sites of the RRG, the second sum runs over SN
nodes with potential disorder. The energies ¢; are independent random variables sampled from a
uniform distribution on [-W/2, W/2|. We consider gaps between adjacent levels, §; = E; 1 — E;,
where the eigenvalues of a given realization of the Hamiltonian for a given total number of particles,



Motivation for the model

* At many occations there are topologically
protected states in the many-body systems

» Zero modes strongly influence the localization
and ergodicity properties

 Example. The topologically protected zero
mode in IQHE is responsible for conductivity

 We mimic a zero mode sector in the physical
space by the sector of «clean» nodes in the
RRG. The ratio of numbers of clean and dirty
nodes - parameter of the model



The delocalized strip gets formed from the
clean nodes at arbitrary large disorder W.
The spectral density in the

central strip is well approximated by the
Kesten-McKay with rescaled degree
Reason - solution of AAT eq at large W s

20
d* = (1-pB)d

00 01 02 03 04 05 06 07 08 09 10
B

10

0.5 1

0.6 -
® (L-Bld—1=0
0.4 -

Critical curve separating the
phases with delocalized strip
and without the mobility edge.

e Formula works well for sparse regime

0.0




Interesting duality between sparse and dense phases

= 00, W=100

00 01 02 03 04 05 06 07 08 09 10
B

N=1024, d= 1004 The width of the delocalized band. Corresponds

to d=20 - degree for complementary graph



Conclusion

* Rich phase structure for k-cycle perturbed
RRG. Surprises with localization.

* Due to the backreaction of matter the geometry
effectively breaks down into fragments whose
number depends on a fermion mass

* Matrix model provides the analytic answer for
the fragmentation in the planar approximation

» 2d discrete gravity coupled to matter provides
nontrivial insight for MBL

» Partially disordered RRG — mobility edge



Thanks for attention!

Stop the war!
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